MATHEMATICAL FORMULA HANDBOOK
Trigonometric Function
Diffrentiation
Algebra
- cosh x = ½ (e^x + e^-x) = 1+ x2 ⁄ 2! + x4 ⁄ 4! + .....
- sinh x = ½ (e^x - e^-x) = x+x3 ⁄ 3! + x5 ⁄ 5! + .......
- cosh ix = cos x
- sinh ix = i sin x
- tanh x = sinh x ⁄ cosh x
- coth x = cosh x ⁄ sinh x
- cosh2 x = sinh2 x = 1
Relations of the functions
- sinh x = -sinh (−x)
- cosh x = cosh (−x)
- sinh x = 2 tanh (x⁄2) ⁄ (1 − tanh2 (x⁄2)) = tanh x &frasl (√ 1 − tanh2 x)
- tanh x = √ (1 − sech2 x)
- coth x = √ (cosech2 x + 1)
- sinh(x ⁄ 2) = √[(cosh x -1) ⁄ 2]
- tanh (x ⁄ 2) = (cosh x − 1) ⁄ sinh x = sinh x ⁄ (cosh x + 1)
- sinh(2x) = 2sinh x cosh x
- cosh(2x) = cosh2 x + sinh2 x − 1 = 1 + 2 sinh2 x
- sinh(3x) = 3sinh x + 4 sinh3 x
- cosh(3x) = 4 cosh3 x − 3cosh x
- tanh(3x) = (3tanh x +tanh3 x) ⁄ (1 + 3 tanh2 x)
- sinh(x ± y) = sinh x cosh y ± cosh x sinh y
- cosh(x ± y) = cosh x cosh y ± sinh x sinh y
- tanh(x ± y) = (tanh x ± tanh y) ⁄ (1 ± tanh x tanh y)
- sinh x + sinh y = 2 sinh ½ (x+y) cosh ½ (x-y)
- sinh x − sinh y = 2 cosh ½ (x+y) sinh ½ (x-y)
- cosh x + cosh y = 2 cosh ½ (x+y) cosh ½ (x-y)
- cosh x − cosh y = 2 sinh ½ (x+y) sinh ½ (x-y)
- sinh x ± cosh x = [(1 ± tanh (x ⁄ 2)) ⁄ (1 ± tanh (x ⁄ 2))] = e ^(±x)
- tanh x ± tanh y = [(sinh (x ± y)) ⁄ (cosh x cosh y)]
- coth x ± coth y = ± [(sinh (x ± y)) ⁄ (sinh x sinh y)]
THANK YOU