MATHEMATICAL FORMULA HANDBOOK

    Hyperbolic Function Diffrentiation Algebra


  1. cos2A + sin2A = 1
  2. sec2A - tan2A =1
  3. cosec2A - cot2A = 1
  4. sin2A = 2sinAcosA
  5. cos2A = cos2A - cot2A = 1
  6. tan2A = (2tanA) ⁄ (1 - tan2A)
  7. sin(A±B) = sinAcosB±cosAsinB
  8. cos(A±B) = cosAcosB±sinAsinB
  9. tan(A±B) = tan(A±B) ⁄ 1-tanAtanB
  10. cosAcosB = cos(A+B) + cos(A-B) ⁄ 2
  11. sinAsinB = cos(A-B) - cos(A+B) ⁄ 2
  12. sinAcosB = sin(A+B) + sin(A-B) ⁄ 2
  13. sinA + sinB = 2 sin(A+B ⁄ 2) cos(A-B ⁄ 2)
  14. sinA - sinB = 2 cos(A+B ⁄ 2) sin(A-B ⁄ 2)
  15. cosA + cosB = 2 cos(A+B ⁄ 2) cos(A-B ⁄ 2)
  16. cosA - cosB = -2 sin(A+B ⁄ 2) sin(A-B ⁄ 2)

Relations between sides and angles of any plane triangle

In a plane triangle with angles A,B, and C and sides opposite a,b, and c respectively,

a ⁄ sinA = b ⁄ sinB = c ⁄ sinC = diameter of circumscribed circle.

a2 = b2 + c2 - 2bc cosA

a = b cosC + c cosB

cosA = (b2 + c2 − a2) ⁄ 2bc

tan(A-B ⁄ 2) = (a-b) ⁄ (a+b) cot C ⁄ 2

area = ½ ab sinC = ½ bc sinA = ½ ca sinB = √ s(s-a)(s-b)(s-c) , where s=½ (a+b+c)

Relations between sides and angles of any spherical triangle

In a spherical triangle with angles A,B, and C and sides opposite a,b, and c respectively,

sina ⁄ sinA = sinb ⁄ sinB = sinc ⁄ sinC

cosa = cos b cos c + sin b sin c cos A

cosA = -cos B cos C + sinB sin C cos a

THANK YOU